Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflected Backward Stochastic Differential Equations Driven by Countable Brownian Motions

In this note, we study one-dimensional reflected backward stochastic differential equations (RBSDEs) driven by Countable Brownian Motions with one continuous barrier and continuous generators. Via a comparison theorem, we provide the existence of minimal and maximal solutions to this kind of equations.

متن کامل

Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion

We study the ergodic properties of finite-dimensional systems of SDEs driven by non-degenerate additive fractional Brownian motion with arbitrary Hurst parameter H ∈ (0, 1). A general framework is constructed to make precise the notions of “invariant measure” and “stationary state” for such a system. We then prove under rather weak dissipativity conditions that such an SDE possesses a unique st...

متن کامل

Stochastic differential equations driven by G-Brownian motion with reflecting boundary conditions

In this paper, we introduce the idea of stochastic integrals with respect to an increasing process in the G-framework and extend G-Itô’s formula. Moreover, we study the solvability of the scalar valued stochastic differential equations driven by G-Brownian motion with reflecting boundary conditions (RGSDEs).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2020

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-020-00998-y